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A quantitative analysis of solutions to the Euler equations of fluid
dynamis with the MUSCL, ENO-Harten, and efficient ENO-Shu al-
gorithms is performed. investigations of different test problems in
one and two dimensions are presented. These are chosen as to
model the shock~turbulence interaction in flutd dynamical systems,
The notion of subcell resclution developed by Harten for the ENO
schemes clearly improves the solution in one dimension; however,
the effect is less prominent in a Strang-type extension to two dimen-
sions. OQur results confirm the superiority of the ENO schemes over
the MUSCL approach in solving problems of flow fields with discon-
tinuities which, at the same time, contain fine structure in its smooth
paris. © 1995 Academic Press, Inc.

1. INTRODUCTION

The direct numerical simuiation of compressible turbulent
flow interacting with a shock needs accurate and eflicient
schemes for the integration of the Navier-Stokes equations.
On the one hand one has to resolve the fine structure in the
smaoth Nlow field; on the other hand one must capture a shock
very acarately not o produce osciilations that may be misinter-
preted as enhanced turbulence. There are actually only few
numerical schemes that could handle both points satisfactorily.
Spectral codes and compact schemes will not satis{y the latter
criterion unless the shock is very broad: shock-fitting ap-
proaches are possible but very complicated because of the
corrugated structure of the shock. Only high resolution schemes
like the TVD-MUSCL approach of van Leer [ 11] or the ENO
approach of Harten [7) seem to be able to handle these sorts
of problems. In our investigation we vsed ENO schemes up to
fourth order to demonstrate their superiority over TVD schemes
for calcuintions of fluid flows with a spatial structure. We
compare results in one and two dimensions of a TVD algo-
rithm, ENQ schemes with/without subcell resolution and the
efficient implementation of the ENO approach. They are used
o approximate systems of hyperbolic conservation laws of
the type
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where & = (i, ..., 1), X = (%, ..., x;)". d is the dimension of
the problem, and s is the number of independent variables. We
use bold face letters to denote the vector quantities and plain
letters for scalar quantities. The system of Eq. (1) is hyperbolic
in the sense that A(u) = If/du has real eigenvalues and a set
of linearly independent eigenvectors.

The TVD scheme used for comparison is a MUSCL scheme
by Colella [2] which we will call TVD-MUSCL in the follow-
ing. It is a modification of van Leer’s and Woodward’s original
algorithms in |11, 12]. A numerical method is called total
variation diminishing (TVD), if the following inequality holds
for scalar conservation laws

TVU™ Y = TV(UM (&)]

with " being the celi average of any grid function at the nth
time siep. The total variation of a discrete function n; at site 7
being detined as

TV = Z [t = thy]. 4)

In the TVD-MUSCL approach the piecewise linear reconstruc-
tion @'(x, 1,) of the cell averages U™ in the cell ensures that

TV, 1) < TV(U® (5)

1t can be shown, that with this condition being fulfilled the
scheme is TVD for scalar conservation laws. To guarantee
this property in flows with discontinuities, slope limiters are
introduced. They, however, reduce the accuracy of the approxi-
mation near local extrema and discontinuities. In the TVD-
MUSCL approach, the linear distribution #(x, f,) of the vari-
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ables in the cells and the choice of the limiters are obtained
using Colella’s algorithm.

The ENO algorithms were taken from Harten's publications
[7. 8] and the efficient implementation of Shu from [15, 16].
The introduction of the powerful notion of subcell resolution
(SR) of Harten [9] is used to sieepen the contact discontinuities
in sclutions of the Euler equations. The polynomial #"(x, #,) in
the ENQ reconstruction obeys the relation

TV(@(x, &) =< TV + G, {6)
where @(x, 1,) in (6) denotes a piecewise polynommial recon-
struction of order (r — 1), & is the grid spacing. This implies
that the reconstruction is essentially non-oscillatory, allowing
oscillations of O(#").

Both approaches try to obtain a more accurate representation
of the initial distribution by a polynomial expansion of the
mean values in the cell, The basic difference of the two is
obvious from Eqs. (5) and (6). The use of slope limiters in the
TVD-MUSCL case results in the loss of the extra term present
in (6). The necessity of limiters in the MUSCL case leads to
the clipping of extrema due to their inability to distinguish
between local extrema and discontinuities. An explanation for
the clipping phenomenon is the fact that all standard limiters
consider only the ratio of two differences which does not pro-
vide enough information to discriminate a local extrernum from
a discontinuity.

In the ENQO case though, the total variation is bounded by
means of the adaptive stencil technique. The polynomial is
thereby generated through an adaptive stencil via the divided
differences in such a way, that only those points contribute
to the approximation, through which the polynomial is the
*smoothest.”” Due to this adaptivity the high order accuracy
of the method can be obtained right up to discontinuities in the
computational domain and does not result in the clipping of
local extrema. It should be noted that it is possible to convert
a second-order efficient ENO scheme to a well known TVD
scheme by substituting the stencil selection algorithm with the
minmod function (see [16]). Inherent to the construction of the
ENO algorithm is the fact, that it can, in principle, be extended
to any desired order of accuracy. While the original ENO
scheme of Harten uses a reconstruction procedure to evaluate
point values from cell averages, the efficient implementation
applies the adaptive stencil idea directly to the numerical fluxes
and is thereby supposed to save lots of effort for a muli-
dimensional implementation.

To obtain two-dimensional results we used the fractional
step time-splitting method of Strang [17] in the TVD-MUSCL
approach of Colella and in the ENO implementation of Harten,
while in the efficient ENQ case we used the algorithm described
in [15, 16] with a TVD-Runge—Kutta time integration.

In the next section we will briefly review the numerical
procedures of the ENQ algorithms used in this paper. We will
display errors of some numerical solutions in Section 3.
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2, IMPLEMENTATION OF THE ENO SCHEMES

We briefly describe the implementation of the ENO schemes
of Harten (‘‘ENO-Harten’” in the following) taken from his
original paper [7], the implementation of the subcell resolution
{SR) as developed in [9], and the efficient implementation of the
ENO scheme (‘‘ENO-Shu’’) of [15, 16]. The TVD-MUSCL
approach of Colella need not be described again, but is given
in detail in the original paper of 1985 [2].

General Remarks

The basic difference between other high resolution schemes
and the ENO approach lies in the application of an adaptive
stencil, that adjusts to the smoothness of the solution. The
stencil chooses points that will contribute to the computation
of Nuxes over cell interfaces for the next time step in a nonlinear
manner, dependent on the instantaneous solution. Its criterion
is the smoothness of the field, which is determined by the
computation of divided differences. In smooth fields these are
a measure for the denvative of the solution, while in fields with
discontinuities they are of the order of the jump. No limiter
functions that would reduce the order of a scheme near such
jumps are therefore necessary, The stencil selection algorithm
uses enough information to decide whether three differences
mimic an extremum or a discontinuity. This gives rise to the
property that high order ENO schemes do not clip local extrema
and one can obtain oscillation-free solutions near discontinu-
ities.

Implementation of the ENO—Harten Algorithm

The original ENO-Harten scheme uses piecewise smooth
polynomials of high order to obtain an essentially non-oscilla-
tory reconstruction of the solution w{x, t,) in the cell. After
transforming the conservative variables into the characteristic
directions we interpolate the characteristic components, because
this approach gives rise to a smoother representation of the
solution than using the conservative components directly (see
numerical experiments in [7]). By means of a Cauchy-
Kowalewski procedure, time derivatives of the conservative
varibles are expressed as functions of spatial derivatives. Using
these in a Taylor expansion of the primitive variables in time
yields Riemann problems at time levels between the old and
new time step © and #*!, respectively. The resulting fluxes
PR <t << 'y are integrated by the Gaussian integration
technique to obtain the time averaged flux in the time interval
Ar = ' — 1 Updating the next time level is performed by
an Euler time step, The solution of Riemann problems at the
cell interface is in all ENO computations approximated using
Roe’s averaging. A correction to the flux according to Harten
and Hyman [10] is added to omit entropy violation.

Implementation of the Subcell Resolution

In the SR case which was originally designed for one space
dimension special attention is being taken of the detection and
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resolution of contact discontinuities. Its extension to higher
dimensions is a tedious task. At present it is not clear how to
extend the concept of the subcell resolution to multi-dimen-
sional problems. In one dimension it is performed by extrapolat-
ing the polynomials to the left and to the right of the cell
up to a position z into the cell giving a second polynomial
representation. z is determined by setting the average value
of the characteristic variable equal to the integral of the two
polynomials over the cell. A flux that is being added to the
ENO-Harten flux stems from the difference of this polynomial
representation inside the cell and the original one. The detection
of contact discontinuities is done using the derivative of the
polynomial multiplied by the eigenvector that corresponds to
the linearly degenerate characteristic field. 'One could in princi-
ple extend such a modification to the other characteristic fields
as well; the computational effort, however, is too high compared
to the gain in accuracy.

Implementation of the Efficient ENO Scheme

We want to emphasize that for Shu’s ENO schemes efficiency
means ease of implementation especially for multi-dimensional
cases. In the efficient ENO algorithm the reconstruction of
point values from cell averages is overcome by applying the
adaptive stencil directly to the fluxes. So not only this step is
omitted, but also having to solve a Riemann problem. We used
the ENO-RF algorithm of [16] in the following, which is a
combination of the ENO-Roe and ENO-LLF (local Lax—
Friedrichs) algorithms. In the ENO-Roe case the fluxes are
transformed into the characteristic directions by multiplying
them with the matrix of left-eigenvectors, that was obtained by
Roe averaging the conservative components. After determining
the (local) wind direction, the first point of the stencil is chosen
in the upwind direction to obtain stability. The further choice
of the stencil is done in the ENO—Harten manner. After multi-
plying the interpolated fluxes at the cell interfaces with the
right eigenvectors, an updating is made by a TVD Runge—Kutta
time integration scheme developed by Shu [15] with an accu-
racy up to fourth order. This scheme is labeled TVD, because
it has been shown (see [13]) that it does not increase the total
variation of the spatial part under a suitable CFL restriction. If
“‘expansion shocks” occur in single cells, the flux is modified
according to the local Lax—Friedrichs (LLF) algorithm of [16].
The flux vector is thereby split into the sum of two fluxes f~*
at each site such that the matrix of right-/left-eigenvectors has
only positive/negative eigenvalues. Projection into the charac-
teristic directions and the choice of the stencil then follow as
outlined above for each of the two fluxes. The combination
of those two algorithms in the ENO-RF implementation was
chosen, because it is expected to provide the lowest possible
numerical viscosity among the efficient ENO schemes at the

' We want 10 mention at this point that there is a typographical error in [9]
in Egs. (6.10a%). There must be a 76 on the left-hand side instead of 2 &,
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same time, omitting the entropy violation by means of switching
to the LLF-flux at sign changes of the eigenvalues of of/ou. The
computational amount increases compared to the ENO-Roe
algorithm alone as one has to compute the divided differences
not only for the fluxes but additionally for the components u.

3. NUMERICAL RESULTS

We use the notation ENO/r for approximations to the differ-
ential equation (1) with the ENO-Harten scheme, where r =
2, 3, 4 refers to the order of the approximation. ENO/r/SR
denotes the ENO scheme of order r with subcell resolution.
For the efficient approximation with the ENO-Shu scheme we
choose the notation to be EENO/r (efficient ENQO). The CFL
number we used in all calculations with the exception of the
EENO/r case is 0.9. In the latter situation we had to reduce
the CFL number to (0.5 in order to obtain oscillation-free results.
As a measure of error in one dimension we take the

1 N 172
L-norm: {N' > (v — ulx, :))2} ¥)

with N denoting the number of grid points in x direction. v, is
the approximation to the exact solution u(x;, ).
In two dimensions we define it to be

.=

1 4
NN, 2

3 j=t

112
l,-norm: { vy — ulx;, y, 1‘))2} , (8)

where N,, N, is the number of points in x, y directions, respec-
tively.

Example 1

In this example we consider the one-dimensional problem of
[16] solving the Euler equations for a polytropic gas following a

~y-law, 1e., Eq. (I) withd = 1 and s = 3. p, g, M, E, and

P denote the density, velocity, momentum, total energy, and
pressure, respectively; ¥ is chosen to be 1.4,

u={(p, M, E)Y, f(u)=gqu-+ (0P gP), &)
where
P=(y— D(E - g

M=p-q (10)

The initial conditions describe the interaction of a Mach 3
shock with a sine wave in the density field, by keeping all other
thermodynamic quantities constant; i.e.,

p = 3.857143, g = 2.629369, p = 10.333333 forx < —4,

p=1+esins5x, g=0, p=1 for x = —4.
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FIG. 1. TVD-MUSCL scheme compared with exact solution.

The results for EENO/2 and EENQ/3 were obtained using a
CFL number of 0.5; those for EENO/4 were obtained with a
CFL pumber of 0.2. We use € = (1.2, An analytic linearized
solution exists for & <€ 1 in [14], with which our results are in
qualitative agreement. The ‘‘exact’” answer to the hydrody-
namic problem is given by a numerical solution with 1600
points in the interval [—35; 5] (as can also be seen in [16]). Alj
other results shown are obtained using 200 points; the integra-
tion time is ¢ = 1.8.

In Figs. 1 to 6 plots of the results obtained with the different
approximations are shown. In Fig. 1 the damping of the TVD-
MUSCL compared to the ENO solutions in Figs. 2-6 can be
seen. The strong attenuation of the amplitudes occurs mainty
at the first three extrema. The ENO/2 algorithm in Fig. 2
shows—in comparison with the EENO/2 implementation of

FIG. 2. ENO/2 scheme compared with exact solution.

x

FIG. 3.  EENO/2 scheme compared with exact solution,

Fig. 3—a slightly better resolution of these maxima. A compari-
son of ENO/2/SR in Fig. 4 with ENO/2 and EENO/2 shows
a significant improvement. The /-norm is 29% lower than the
norm for the ENO/2 algorithm and only about 2% higher than
that for the fourth-order ENO/4 result, thus showing the excel-
lent performance of the subcell resolution concept in the cne-
dimensional case.

The approximation with which we obtained the best results
in the smooth part of the solution is the fourth-order algorithm
of Harten with SR which is shown in Fig. 5. An obvious
problem for all schemes in this low resolution remains the
proper prediction of the flow behaviour at the position, where
the acoustic (fast travelling) and the entropy waves (for the last
time) interact, i.e., at x = (.8,

The results show, that the TVD-MUSCL. scheme has a shock

x

FIG. 4. ENO/2/SR scheme compared with exact solution.
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FIG. 5. ENO/4/SR scheme compared with exact solution.

profile which is comparatively as steep as the shock profile
given by the ENO approximations. The shock-widths produced
by all ENO schemes are approximately equal, with the efficient
EENO scheme of second-order accuracy giving the worst val-
ues. Note, that SR does not improve the shock-thickness (mea-
sured in terms of number of grid points), but only leads to a
better prediction of the contact discontinuities in the flow field.
The shock width is a difficult quantity to define and evaluate
in this case. One should also note that there are limiters for the
TVD-MUSCL scheme which show overcompression effects
and steepen the shock profile even more.

A point we want to stress is the difference between results
gained with EENQ/4 and ENO/4/SR. In Fig. 7, which contains
the 4-norms the EENQ/4 realization has a lower value in the
error norm than ENQ/4 and ENO/4/8R as well. Despite the

X

FIG. 6. EENO/4 scheme compared with exact solution.
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FIG. 7.
Ax =&

L norms of the density in the one-dimensional test problem with

higher absolute errors of the efficient implementation in com-
parison with Harten’s algorithms in the smooth part of the
solution, we observe this strange result because of the very
high derivation of the ENO/4 and ENO/4/SR values from the
exact solution at the shock location. The absolute value of the
density at one point belonging to the shock is one order of
magnitude higher than in the EENO case. This creates an ap-
proximately 9% higher value in the /,-norm of the ENO/4/SR
data on the coarse grid.

From these results we conclude that the ENO scheme gives
a better representation of the exact solution than the TVD-
MUSCL scheme. The efficient implementation of Shu shows
slightly better resuits for the fourth-order case close to the
shock than the one of Harten. In the smooth part of the solution,
however, the latter represents the physics more accurately.

Two-Dimensional Problem

In the case of the original ENO/r scheme with/without SR
in two dimensions we used the fractional step time-splitting
algorithm of [17]. This implementaticn in not a really two-
dimensional implementation as the one described in [6 or 1].
The fractional step methed approximates the solution only up
to O(AFP). In case of higher order approximations, however,
the one-dimensional spatial operators will be approximated to
a higher degree of accuracy. This is confirmed by our results.
For the EENO/r scheme the one-dimensional algorithm is ap-
plied to each of the terms f; in (1) while keeping all other
variables fixed (see [16]). Another remark we want to add is
the fact that, concluding from the numerical experiments we
performed, we expect the phase errors in the case of structured
fields to depend on the order of the approximation in space and
time. This, on the other hand, will be crucial for an appropriate
description of turbulent flows.

In our example the Euler equations in two dimensions are
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given by Eq. (1) with & = 2 and s = 4 (we will use x and y
instead of x, and x,) with the definitions

u=(p, M, M, EY, (11
f(w) = gu + (0, P, 0, qP), f,(u)=qu+(00P qP),
(12)
where
l 2
P=(y~-1 E"qu , (13)
¢ =ql+q} M.=pq. M.=pq,, (14)
and
+
cli(v—l)-(Hulqz), H=EXL (15)
2 p

The symbols denote the same quantities as those used in the
previous example. The indices x and y refer to their components
in the corresponding directions. The eigenvalues of of./ou are

AMA=g—c A=Ah=gq, AM=g tc (16)
The matrix, the columns of which are the right eigenvectors
I, is

1 1 0 1
g —C g 0 g te¢
RF=(rhr2sr37r4) = [ (17)
4y g, |1 gy

H— 4qxC _%ql dy H+ q:C

while the matrix, the rows of which are the left eigenvectors
lk, i

ll bz + qlf,C —lic— b|q,; _blqy b|
L) ([21-b)  2bg, 2big,  —2b
Le=1 172 ~2gq, 0 2 o [
1 by—gdc Ve—hbg, —hg, b
(18)
with
_—-bH _ |
b, ==a b1—561213|o (19)

The results of of,/7u are abtained by exchanging ¢, and g, in
the above vectors,
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FIG. 8. ENQ/2 contour plot of the density at 1 = 0.2. Grid spacing h = 4=

Example 2

In this last example we consider a vorticity wave interacting
with a shock. This test problem was used in [I8] and was
computed with the efficient ENO scheme in [16] to demonstrate
the capability of the ENO schemes especially for shock—
turbulence interactions. In this problem a Mach 8 shock initially
at x = —1 is moving to the right into a gas with the following
flow variables: p; = 1, p, = 1, and g, = —(¢y/psin &, cos(xk
cos & + yk, sin ), g, = (¢/p)) cos & cos(xk, cos & + ¥k
sin #) with k, = 2x, 9, = 7/6. The wavelength of the vorticity
wave in the v direction being 2. The index ! in the initial
conditions denotes the preshock situation. The domain of com-
putation is [—1.5; 1.5] X [—1; 1]. Periodic boundary conditions
are used in the y direction. In Figs. 8 and @ contour plots of
the density are shown at time ¢ = (.2 for two different spatial
resolutions. The ENO/2 algorithm is used to integrate the Euler
equations. The grid spacing in x and y direction is A = g in

FIG. 9. ENO/2 contour plot of the density at ¢ = 0.2. Grid spacing h = gw
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FIG. 10. Cutaty = ~0.525 (a) and v = 0.523 (b). Comparison of the
TVD-MUSCL and ENO/2 results with a high-resolution run  of
260 X 640 grid points. Crosses denote the TVD-MUSCL, circles denote the
ENO/2, and the solid line is the exact sclution.

Fig. 8 and # = gz in Fig. 9. Forty-one contours are displayed
from 1.030 to 6.100, with a spacing of 0.130. The maximum
on the coarse grid run is only 5.710 (marked with “*x’’), because
of the lower resolution.

Figure 9 represents the numertcal solution we consider 10 be
“‘exact,”” obtained on a 960 X 640 grid. This means, that a
further refinement of the grid has led to practically the same
solution everywhere in the field. We display the density, be-
cause the SR is applied only to perturbations that are transported
with the floid velocity, thus improving onty, e.g., entropy, and
thereby density discontinuities. To compare the different
schemes we consider the density profiles at constant y. In Figs.
10a and b a cut through the computational regime at y =
—{0.525 and y = 0.525 is shown. The crosses denote the solution
cbtained with the TVD-MUSCL algorithm on a mesh with
60 X 40 grid points, the circles denote the ENQ/2 results, The
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solid line corresponds to the “‘exact’” solution of Fig. 9 with
960 X 640 grid points. If we compare the two results, it is
obvious that the TVD-MUSCL scheme dampens the maxima
more than the corresponding ENO approximation. The shock
is broadened up to six mesh points, thus giving a worse shock
representation than the ENO/r schemes. Figures 11a and b
confirm the validity of this statement also for the EENO/r
results. We ran the computations for the TVD-MUSCL scheme
also with a grid of 240 X 160 points which naturally gave a
better representation of the shock. In the wavy part of the
density field, however, it is only roughly 10% better than the
ENO/2 resuit on the 60 X 40 grid. This already shows the
excellent performance of the ENO algorithm for this sort of
two-dimensional problems. This statement is supported by the
&y norms in Table I,

If we increase the order of the approximation, we get a better
representation of the solution. In Fig. 12a and b we plotted the
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FIG. 11. Cut at y = —0.525 (a) and y = 0.525 (b). Comparison of the

TYD-MUSCL and EENQ/2 density results with a high-resolution run of 96(
X 640 grid points. Crosses denote the TYD-MUSCL, circles denote the EENO/
2, and the solid line is the ¢xact solution.
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TABLE [

I, Norms of the Density in the Case of a Vorticity-Wave Interacting
with a Shock
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same cuts for the EENO/4 and ENQ/4 data. Despite of the
fourth-order TVD time discretization in the EENO case the
approximation turns out to be hardly better than in the second-
order in time ENOQO approach. If we turn on the SR in the

y=-0525 y = 0525 ¥ ixy) ENG/2/SR computation (see Fig. 13a), the scheme shows an
rcompression effect at y = —0.525 and x = 0.525. This is
TVD-MUSCH 0.456 (0.468 0.466 0}:’8 €0 . p S; th Ly . . lv th
ENO/2 0227 0931 0247 e region, where three waves interact, namely the entropy,
ENO/2/SR 0.227 0235 0.245  acoustic, and transmitted vorticity wave. The failure of the SR
ENOG/3 0.214 0.240 0.239  approach in this case may be due to the fact that the algorithm
ENG/3/5R 0.214 0.243 0238 s basically 1D and cannot simply be extended to a truly two-
‘Eﬁgﬁ[m 8;?3 g;i; 8;?: dimensional implementation. In Figs. 13a and b the direct com-
FENO/2 0230 0.235 074  parison of the lENO/2 with ENO/Z/SB resul-[s sho'ws as we,l]
EENO/3 0.290 0233 o280 that an extension of the SR to two dimensions via Strang’s
EENO/4 0.384 0.331 0.371 dimensional splitting does not enhance the quality of the solu-
tion. This is confirmed by the I norms in Table T which do not
decrease with the SR being added. A computation using a
fourth-order ENO scheme with SR further reduces the quality
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FIG. 12. Cut at y = —0.525 (a) and y = 0.525 (b). Comparison of the
EENG/4 and ENO/4 density results with a high-resolution run of 960 X 640
grid points. Crosses denote the EENO/4, circles denote the ENO/4, and the
solid line is the exact solution,

FIG. 13, Cutat y = —0.525 (a) and ¥ = 0.525 (b). Comparison of the
ENO/2/5R and ENOY2 density results with a high-resolution run of 960 X
640 grid points. Crosses denote the ENO/2/SR, circles denote the ENG/2, and
the solid line is the exaci solution.
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of the result. A full multi-dimensional implementation of the
SR algorithm would be desirable.

4. CONCLUSIONS

We have investigated the behaviour of ENO algorithms de-
signed by Harten [7] and Shu [16] to solve the Euler equations
of fluid dynamics in comparison to a TVD scheme. The TVD
algorithm chosen was that of Colella [2]. Two of the test prob-
lems modeted the shock—turbulence interaction. In the example
of an incoming wave, namely a density wave in one dimension
and a vorticity wave in two dimensions, interacting with a
shock, we found, that the TVD-MUSCL approach does not
provide satisfactory results. It leads to a sharp shock without
oscillations at the expense of the accuracy in the smooth part
of the solution. This accuracy, however, is necessary for the
direct numerical simulation of compressible turbulence. The
ENO schemes provide higher accuracy compared to the TVD-
MUSCL approach in the smooth parts while preserving sharp
shock profiles, Comparing the different implementations of the
ENO method, the ENO schemes of Harten are more accurate
than the EENO schemes. This advantage is outweighed by the
ease of multi-dimensional implementation of the efficient ENO
schemes. A true two-dimensional implementation of the ENO
schemes [1} is much more laboricus. Applying the subcell
resolution approach in one dimension we confirmed the ex-
tremely promising results of Harten and Shu. Its simple imple-
mentation in two dimensions via Strang’s fractional steps
method showed no significant improvement of the numerical
results, being not at all comparable to those achieved in the one-
dimensional example, We tried to confirm this by computing the
I; norms of the different schemes in one and two dimensions
for the different test cases.

A computation of the first test problem using an implementa-
tion of the TVD-PPM method of {4] by Gathmann [5] did
show some improvement over the TVD-MUSCL scheme, but
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still lead to results worse than those of the ENO scheme. With
respect to the shock—turbulence interaction problem we finally
conclude that the ENO schemes are more reliable in predicting
the complicated flow structure than TVD schemes.
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